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Abstract. The ground penetrating radars (GPR) are now widely used for the detection of buried objects in areas
such as: geology, archaeology and civil engineering. It has the advantage of allowing detection by a non-destructive
technique. The principle for time domain GPR consists in emitting electromagnetic pulses in the ground, these one are
then diffracted by the targets to be detected. A single GPR signal trace captured at a position of the radar is a 1D signal
called Ascan. A set of Ascan radar waveforms captured at a certain number of different consecutive positions along
a particular direction will form a 2D image called B-scan. They show response shapes of hyperbolic type and their
analysis give many characteristics. For example, in the case of buried pipes, a specific processing allows to find their
diameter, their nature as well as the electrical characteristics of the ground. However, these approaches often require
complex post-processing of the Bscan, which can be time-consuming and therefore makes it difficult to perform real-
time characterization at the expense of such methods. With the emergence of deep neural networks and with a learning
phase on a large number of Bscan, it becomes possible to extract almost instantaneously the characteristics of GPR
radar data. In this study, a multi-label classification (MLC) model based on transfer learning and data augmentation
has been developed to generate multiple information elements on the same image and to realize classification. Three
deep learning models: VGG-16, ResNet-50 and adapted CNN were used as pre-trained models for transfer learning.
The networks were trained on a synthetic dataset created in this study and evaluated on a set of performance metrics.

Les radars a pénétration de sol (GPR) sont aujourd’hui largement utilisés pour la détection d’objets enterrés dans
des domaines tels que la géologie, I’archéologie et le génie civil. Il présente 1’avantage de permettre une détection
par une technique non destructive. Le principe du GPR dans le domaine temporel consiste a émettre des impulsions
électromagnétiques dans le sol, celles-ci étant ensuite diffractées par les cibles a détecter. Une seule trace de signal
GPR capturée a une position du radar est un signal 1D appelé Ascan. Un ensemble de formes d’ondes radar Ascan
capturées a un certain nombre de positions consécutives différentes le long d’une direction particuliere formera une
image 2D appelée B-scan dans le cas d’un déplacement rectiligne. Elles montrent des formes de réponse de type
hyperbolique et leur analyse donne de nombreuses caractéristiques. Par exemple, dans le cas de canalisations enterrées,
un traitement spécifique permet de connaitre leur diametre, leur nature ainsi que les caractéristiques électriques du sol.
Cependant, ces approches nécessitent souvent un post-traitement complexe du Bscan, ce qui peut étre chronophage
et rend donc difficile la caractérisation en temps réel au détriment de ces méthodes. Avec I’émergence des réseaux
neuronaux profonds et avec une phase d’apprentissage sur un grand nombre de Bscan, il devient possible d’extraire
presque instantanément les caractéristiques des données radar GPR. Dans cette étude, un modele de classification
multi-label (MLC) basé sur 1’apprentissage par transfert et I’augmentation des données a été développé pour générer
des éléments d’information multiples sur la méme image et réaliser la classification. Trois modeles d’apprentissage
profond : VGG-16, ResNet-50 et CNN adapté ont été utilisés comme modeles pré-entrainés pour 1’apprentissage par
transfert. Les réseaux ont été formés sur un ensemble de données synthétiques créé dans cette étude et évalués sur un
ensemble de mesures de performance.

Keywords: Ground Penetrating Radar, Image processing, Detection of Buried objects, Deep learning.

1 Introduction

Ground Penetrating Radar (GPR) [Jol08] is an increasingly significant and effective approach for
non-destructive engineering investigations. Over an extended time span, the GPR has been applied
extensively to geological research, in civil engineering, as well as in agriculture and environment.



Recently, different approaches have been proposed by scientists for the processing of GPR data.
T. Noreen [NK17] suggests a machine learning based approach for hyperbolic signature identi-
fication using a SVM (support vector machine) with the histogram of oriented gradient features
(HOG). E. Temlioglu [TDG16] proposes different approaches in landmine detection: among them
Binary Robust Independent Elementary Features (BRIEF), Edge Histogram Descriptor (EHD),
Histogram of Oriented Gradients (HOG), Scale Invariant Feature Transform (SIFT) and Speeded
Up Robust Features (SURF). In this study, W. A. Wahab [Wah+13] suggested a novel hyperbola
fitting technique for estimating the radius of buried utilities (pipes and cables). The approach was
implemented on buried pipes of nine different diameter values. B. Walker and L. Ray [WR19] have
implemented a feature-based machine learning approach to processes GPR data. The researchers
employed feature vectors from the Histogram of Oriented Gradients (HOG) with a Support Vector
Machine (SVM) to detect deep and shallow crevices. Additional characteristic operators are also
used as a pre-processing approach, such as Sobel’s [MS13], Wavelet Edge Detection [GGW20],
Canny’s operators. These approaches are very slow in computation, but they provide very accurate
and precise extraction of the characteristics of the B-Scans.

In recent years, several researchers have proposed approaches for the automatic identification and
localization of buried objects based on deep learning models. This has demonstrated the many
benefits of deep learning technologies. As the amount of GPR data expands, the capabilities of
the existing machine learning techniques are becoming less performant for digital image process-
ing. Researchers [BTS22] [KPT18] [AE21] [Tis+09] increasingly began to employ CNN-based
methods of learning hyperbolic shapes for the classifications and identification of buried objects.
Most of the methods mentioned here focus on identifying and positioning of buried objects, and
classifying them according to a single characteristic. Recently, very limited studies have focused
on a multi-label classification model [TKO7] [Wei+14] to provide multiple pieces of information
from a single image.

The paper’s contributions are synthesized as described below: Database creation based on the Fi-
nite Difference Time domain (FDTD) simulation, Image processing using gradient operators for
edge region detection ( Sobel, Canny, and Prewitt), Development of a multi-label model for the
identification of the diameter of buried pipes, their inner space filling as well as the identification
of the soil medium based on three models: VGG 16 - Resnet 50 - and customized CNN. The origi-
nality of this work mainly concerns the development of deep learning model architectures, and the
approach to model prediction and analysis of the three models developed.

2 Methodology

In order to generate our dataset, we will use the TEMSI-FD software [XLI] developed within the
EMC team of the XLIM Institute. It consists of a FDTD-based method software [THP0S5] designed
to simulate the propagation of electromagnetic waves in complex media. For the GPR study, the
time domain signal emitted, propagating and received by antennas can be calculated. It is useful to
represent these recordings in two forms: the A-scan (1D response), the B-scan (2D image resulting
of multiple consecutive A-scan).To create a simulation model, a number of settings are required.
First, the entire scene has to be designed. The scene is characterized by the propagation medium of
the electromagnetic waves. The model of the ground is based on the fractal model [XLI], but also
on homogeneous medium such as dry clay, dry sand and concrete. The dimensions of the scene in
cells number is 251 x 200 x301 (X x Y x Z), the cell size being 4 mm in each cartesian direction.
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Fig 1: a) The multi-receiver 10 Rx antennas bistatic GPR with one Tx antenna emitter architecture,
b) The way the 10 Rx antennas are moved in one direction during the exploration on the soil

The soil layer depth is 1 meter with a bandwidth of 500 MHz. It is the maximum depth value to
be probed by the GPR, and consequently, it determines the estimation of the maximum time of
observation/simulation, which is 20 ns for this volume. The waveform generated by the Wu-King
antenna is a sinusoidal Gaussian, and this pulse is centered at the frequency of 1Ghz. This duration
was calculated for the case of the concrete layer which has the smallest value for the propagation
velocity among the media considered: v, = \/% with c the velocity of light in vacuum. The GPR
antennas system is composed of a fixed emitter and 10 receiving antennas. The receivers are also
spaced 20 mm apart and moved in groups of 200 mm along the horizontal scan line on the soil,
resulting in a 10-fold reduction in the number of simulations compared to considering the receivers
individually throughout the computational volume. The multi-receiver bistatic GPR 1is illustrated
in the Figure 1. A set of 5400 GPR B-scans database concerning 4 soil types, 50 depth values and
9 different pipe diameters is generated; the current diameters for the simulation data are 16, 24, 32,
40, 48, 64, 72, 80 and 100 mm. The depth values range from 204 mm to 400 mm below the soil
surface. Three types of pipes were chosen during the simulation: a metal pipe, an air-filled pipe,
and a water-filled pipe.

2.1 A-Scan

An A-scan is a one-dimensional (1D) representation of the amplitude of the collected signal as a
function of time after placing the receiving sensor antenna above the point of interest. An example
of an A-scan is shown in Figure 2. It represents the signal captured by the receiving sensor antenna
R, from the group of 10 low coupled receiving antennas. The first reflection generally corre-
sponds to a combination of direct coupling between the antennas (7'z, R,;) and reflection off the
surface of the ground. The second reflection (at ¢t = 8.5 ns), with a lower amplitude, corresponds to
the response of the object of interest.
To improve the quality of the recordings, it is
often essential to eliminate both surface echoes
and direct antenna coupling, retaining only the
relevant signal. This operation can be per-
formed using two methods during the simula-
tion. Firstly, by taking a measurement without
any objects present and subtracting it from the
recording obtained with objects in the scene,
effectively removing the various couplings. Al-
ternatively, this can be achieved by disregard-

ing the initial moments of the recording. Time (ns)
Fig 2: Example of the waveform of an A-scan
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2.2 B-Scan

The 2D image of the B-scan represents a vertical cross-sectional view of the subsurface. The
horizontal axis of this section represents the position on the ground surface, while the vertical
axis represents the round-trip time of the EM wave propagation. By combining all the A-scans
that make up the B-scan, a matrix is created where each row represents a time sample and each
column represents an A-scan trace. Each element of this matrix has a value corresponding to the
amplitude of the field for the associated A-scan trace and time sample. Buried objects appear as
hyperbolic shapes in the B-scan images. Recordings taken from different positions on the ground
are combined in the B-scan image, thus creating these specific hyperbolic shapes. The figure 4 is
illustrating the resulting treatment of B-scan.

Fractal, 72mm, Metalic pipe

Dry sand, 16mmn, water-filled pipe Dry sand, 16mmn, water-filled pipe

- 0.2 . 0.4 0.5 0.6 0.7 . . ; . 0.4 0.5 0.6 0.7
istance [m] Distance [m] Distance [m]

Concrete, 100mm, Metallic tube

0.2 . 0.4 0.5 0.6 0.7 0.8
Distance [m]

Figure: An example of B-scan images obtained using various propagation mediums, different
diameters, and types of pipes.

2.3 Relevant parameter values

The parameter values employed in the simulation can be found in Table 1, while Table 2 displays
the dielectric parameters corresponding to the soil types.

Table 1: The parameter values of simulations

Parameters of simulations Values
Source frequency 1.00 GHz
Bandwidth 500 MHz
Source waveform Sino-Gaussian pulse
Source pulse duration 1 ns
A-scans intervals 20 mm
No of A-scans 40
Spatial resolution 4 mm




The table 2 provides information on different soil types along with their respective conductivity
and relative permittivity values. The fractal model illustrates that soils are present in distinct layers
or geological formations, which are separated by rough interfaces. These layers demonstrate a
wide range of characteristics [Cia+17]

Table 2: Soil Conductivity and Relative Permittivity

SI. No Soil type Conductivity (S/m) Relative permittivity (&,.)
1 Dry sand 0.002 10.00
2 Dry clay 0.001 5.53
3 Concrete 0.001 8.00
4 Fractal 0.001 6.00

3 Proposed Deep Learning architecture

Now, the CNN and the procedure used to apply deep learning for retrieving the soil and pipes
characteristics will be described. First, the global GPR data handling workflow in this study in-
volves feature extraction, splitting the dataset into training and test sets. This allows respectively
CNN model training and prediction efficiency. The feature extraction pipeline for B-Scan images
consists of testing several approaches to edge detection. The goal of this technique is to signifi-
cantly reduce the amount of data while retaining information that can be considered more relevant.
The objective is to focus on regions of the hyperbola where there is a distinct intensity variation.
The hyperbola region is detected by a bounding box, the image is cropped to extract the region
of interest from each frame. For this purpose, we have focused on Canny’s operators. Canny is a
multi-step edge detection algorithm developed by John F. Canny in 2001 [RNR16], which proceeds
through the following steps:

1. noise reduction: Noise is removed from the image with a 5x5 Gaussian filter [BTS22].

2. Determine the gradient intensity of the image using the Canny operator.

3. Non-maximum Suppression: this step consists of eliminating those undesirable pixels that
may not be edges.

4. Hysteresis Thresholding

Original Image Canny Edges Bounding Box Cropped

0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Fig 4: Example of output from edge detection operators



The objective of this work is to implement Deep Learning models for extracting features like buried
pipes diameters or type of soil layer from B-scan images. We will implement three different archi-
tectures: VGG-16, Resnet-50 through learning transfer and a custom CNN model. The proposed
architecture is a multi-label model classification in which individual objects can be classified into
multiple classes at one time, compared to traditional one-label classification cases involving a sin-
gle class of objects. Multi-label classification approaches are becoming unavoidable in advanced
technology. In this work, in the classification of B-Scan images, each image can belong to several
distinct categories. For example, we classify the type of pipe (metal pipe, water-filled pipe and
empty pipe), 9 different diameters, so that we distinguish four different mediums. As seen above,
the dataset contains 5400 B-Scans, it will be divided in such a way that 80% is reserved for model
training, and 20% for test data. Now we will describe the different topologies.

3.1 Transfer learning using VGG 16 and Resnet 50

Residual neural networks, commonly known as ResNet, have revolutionized the field of computer
vision by serving as a fundamental architecture for various tasks. The term “Residual” refers
to the key concept behind ResNet’s [Sar+21] success. Prior to ResNet, training deep neural net-
works with over 50 layers was challenging due to the problem of gradient backpropagation [TL19].
However, ResNet overcame this obstacle. The strength of ResNet lies in its implementation of skip
connections, which are illustrated in Figure 5. On the left of the figure 5 we stack the convolution
layers successively. On the right, we stack the convolution layers as before, but we connect the
original input to the output of the convolution block. This connection, known as a skip connection,
plays a crucial role in retaining important information from earlier layers. It enables the network to
effectively train deep networks by mitigating the vanishing gradient problem.The skip connection
in ResNet facilitates the flow of gradients throughout the network during training. This means that
the gradients can propagate back to earlier layers more easily, allowing for smoother and more
efficient learning. By incorporating these skip connections, ResNet has achieved remarkable per-
formance in various computer vision tasks and has become a state-of-the-art model for deep neural
network training.

|
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Layer 1 Layer 2 Layer 1 Layer 2

(a) without skip connection (b) with skip connection
Fig 5: Residual learning: a building block
The Visual Geometry Group (VGG-16) [SZ14] is a widely recognized deep Convolutional

Neural Network (CNN) architecture developed by the Visual Geometry Group. The key contribu-
tion of VGG-16 lies in its design, which utilizes a stack of 3x3 filters. This approach demonstrated
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that using multiple small kernel size filters can achieve the same effect as using larger filters, while
also providing the flexibility to increase the depth of the network. VGG models introduced the
notion of depth as a crucial factor in the success of convolutional neural networks. By employ-
ing smaller filter sizes, VGG models are able of learning a larger number of filters, leading to a
more complex representation of the input data. This approach marked a significant departure from
earlier models that heavily relied on larger filters to capture low-level features.One of the notable
achievements of VGG models is their ability to effectively capture both high-level and low-level
features using smaller filters. This demonstrated that the depth of the network combined with
smaller filters can produce powerful representations. This insight paved the way for subsequent
advancements in deep learning architectures. In the case of VGG-16, the network comprises 16
trainable layers, as depicted in Figure 6. The VGG-16 model has been widely adopted in various
computer vision tasks and has achieved state-of-the-art performance on benchmark datasets. Its
success has inspired further research and the development of more advanced CNN architectures.

Convl-1
Conv2-1
Conv2-2
Conv3-1
Conv3-2
Conv4-1
Conv4-2
Conv4-3
Convs-1
Convs-2
Convs-3
Output
A\

{ Dense,96 }{ Dense,96 J{ Dense,26 J

{ Dense,48 J{ Dense,48 M Dense,48 J

Dense,9, Dense,3,
Softmax Softmax

Dense,4,
Softmax

Fig 6: VGG16 architecture with building block of last layers

The pre-trained models VGG16 and Wide ResNet-50 are used in this study. Normalized input
images in mini-batches, with RGB images having three channel dimensions (3xHxW), where H
and W are assumed to be 224, are required by these models. In our approach, the final classifica-
tion layers are substituted with fully connected layers. Specifically, three separate layers replace
the last layer. Diameter classification, pipe type classification, and differentiation of propagation
mediums are handled by the first, second, and third layers, respectively. ReLU and softmax ac-
tivation functions are employed. The initial training layers are frozen, and the modified layer is
trained using the B-Scans dataset. A training duration of 30 epochs with a batch size of 32 is used.
Adam [Zhal8] [TN18] serves as the model optimizer, and categorical cross-entropy is employed
for loss calculation. To enhance computational efficiency and performance, techniques such as
early stopping, data augmentation, and adaptive learning rates are employed. These techniques
aim to improve both the speed of computation and the overall performance of the model.
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Fig 7: Transfer learning strategy

3.2 Custom Model

In this work, a deep convolutional neural network is developed for multi-label classification to
classify 9 different diameters, 3 different pipe types, and 4 different propagation media. The cus-
tom CNN model is inspired by the inception network [Cao+18], it is a model developed by google.
The main difference between the inception model and the ordinary CNNs [JZA18] are the incep-
tion blocks. These consist in convoluting the same input with several filters and concatenating their
results. The aim of this model is to introduce the concept of multipathing, which allows different
characteristics to be simultaneously captured and extracted. The building block is illustrated in
the figure 8, this block contains different convolution layers of different filter sizes (1x1), (5x5),
(7x7). The diversity of the kernel size will increase the capacity of the network to extract the most
complex features. In the input layer, 32 filters of size 3 x 3 are used, followed by a MaxPool
layer and then a batch normalization layer to increase the speed and stability of learning. After
that, a convolution layer with 64 filters of size 3x3 is applied, followed by a max pooling layer.
Two inception building blocks are then defined, each containing convolution layers with 128 and
16 filters of size (1x1), (5x5), (7x7), respectively. At the end of each inception block, all feature
maps are concatenated. The activation function employed in all convolutional layers is the rectified
linear unit (ReLU) defined as: the output of ReLLU is equal to O if the input value is less than 0 and
equal to the input value if the input is positive. Then, all the feature maps are transformed into a
1D vector using a flattened layer. A set of 3 dense layers has been defined, containing 256, 512,
and 256 neurons respectively. Each layer is followed by an activation function ReLLU. Finally, 3
branches were defined for each output, each branch includes upstream a set of three dense layers
respectively consisting of 96, 48 and 48 neurons, each output layer has 9 neurons to recognize the
diameter size, 4 neurons to specify the propagation medium, and 3 neurons to distinguish the pipe
type. The output layers are followed by a softmax layer mainly used for multi-label classification
[RP14] problems to predict the probability of each label.
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4 Results

The simulation dataset consists of nine different diameter values, three types of pipes, and four dif-
ferent propagation mediums. The dataset includes 50 different depths for each simulation scenario.
Each simulation scenario generates a B-scan image, resulting in a total of 5,400 B-scan images.
To further enhance the dataset, data augmentation techniques were applied, resulting in a total of
10,800 B-scan images. The data augmentation process involved key transformations, including no
rotation of the images, zooming up to 10% of their original size, horizontal movement up to 10%
of their width, and vertical movement up to 10% of their height.

4.1 Data augmentation

Enhancing model performance is a comprehensive process that involves employing various tech-
niques to improve the accuracy, efficiency, and robustness of the model. This includes the use of
advanced algorithms, preprocessing data, selecting relevant features, and tuning hyperparameters.
By optimizing these factors, significant improvements can be achieved in the model’s performance.
The effectiveness and reliability of a deep learning model greatly depend on the quantity and di-
versity of the training data. To enhance data diversity and improve the model’s interpretation of in-
formation, basic data augmentation techniques as described in reference [VMO1] [SK19] [Hu+19]
are employed. These techniques introduce visual variability to the data, leading to enhanced accu-
racy. For the B-Scans GPR dataset, the applied data augmentation techniques involve the use of
Horizontal and Vertical shifts, as well as Resizing

4.2 Early stopping techniques

Early stopping [Bai+21] [Mah+17] is a regularization technique commonly used in deep neural
networks. It involves monitoring the model’s performance on a validation dataset during training
and stopping the training process after a certain number of epochs if the model’s performance
does not improve. The weights of the model are saved and updated throughout training. When
further updates no longer result in performance improvement, training is halted, and the most
recent optimal parameters are kept.



4.3 Evaluation metrics

Three indicators were used to evaluate the three Deep Learning models: Precision, Recall, and F1-
score, the accuracy is the simplest indicator, it measures the percentage of correct predictions. It is

defined as follows:
TP+ TN

TN+TP+ FP+ FN M
Based on the results presented in Figure 9, a higher accuracy of 96% 1s observed for the diameter
identification using the VGG16 mode, and an efficiency of 98% for the pipe type identification
achieved by the Resnet-50 model. We also reach a higher level of sensitivity for the identification

of the propagation medium, which achieves 98% for both the VGG16 model and the customized
CNN model.

accuracy =

Accuracy of Different Models for Each Label
T T T

[N Custom CNN B
[N ResNet-50
[CVGG-16

Accuracy

Diameter Type of Pipe Medium of Propagation
Labels

Fig 9: Accuracy vs. weighted accuracy of the three developed models with Canny’s operators

TP (True positive) stands for the number of accurate diameter, pipe type and medium iden-
tifications, FP (False Positives) represents the number of incorrect identifications and FN (False
negative) represents the number of failed recognitions. In GPR, accurate identifications mean that
the target is well located and accurately classified. Incorrect identifications are indicative of a well-
located target, but its geometry, as well as its type and medium, are not properly classified. The
missed identifications reflect the target not being located. The table 3 shows the performance of the
model Resnet-50 based on the 9 classes for the identification of diameters. The overall accuracy
is 96%.Table 3 shows the classification report for the 9 diameter values, we find the precision that
indicates the performance or the positive prediction given by the model, recall is a statistical met-
ric that shows how many positive cases actually correspond to the predicted class. The F1 score
provides the information about the incorrect predictions of the model meaning that 1 is the best
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and 0 is the worst. The F1 score is obtained by calculating the precision and recall of the model.
From Figure 10, out of 86 images it is seen that 80 are correctly predicted as having a diameter of
80mm and remaining 6 incorrectly assigned to other classes. So the precision of the diameter 80
mm class shown in Table 3, can be calculated as:

80
Precision = — = (0.93 2
recision = - 2)

In Figure 10, out of a total of 86 images labeled as 80 mm diameter, 80 images were correctly
predicted, resulting in a recall of approximately 93.00% for the class ”diam80”.

80
Precision = — = (.98 3
recision = - (3)

The F1-score can be calculated as follows:

2 - Precision - 11
Fl-score — — oM TECA0_ ) g5 (4)
Precision + recall

Table 3: Results from the Classification Report: diameter Identification on Test Set
Labels Precision Recall FI1-Score
Diameter 16mm 0.96 0.98 0.99
Diameter 24mm 1.00 0.98 0.99
Diameter 32mm 1.00 0.98 1.00
Diameter 40mm 1.00 0.95 0.98
Diameter 48mm 0.95 0.97 0.96
Diameter 64mm 0.85 0.98 0.96
Diameter 72mm 0.95 0.84 0.89
Diameter 80mm 0.93 0.98 0.99
Diameter 100mm 1.00 0.98 0.99

In Figure 10, the confusion matrix provides insights into the model’s accuracy in predicting diam-
eters. It excelled in predicting diam16, diam32, and diam80, but misclassified diam72 as diam80
or diam64. The matrix depicts actual class labels on the vertical axis and predicted class labels
on the horizontal axis. It showcases precise classification for all four categories (clay, concrete,
fractal, sand) with no misclassifications. However, some instances of ”Water-filled pipe” were mis-
classified as ”Vaccum” while the model performed well in classifying ”"Metallic” and ”Vaccum”
categories.

11
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Figure: Matrix-confusion of diameter identification - Medium of propagation and type of pipe
classification with Resnet-50 Model

4.4 Prediction on multiple buried objects

The network’s performance was assessed by testing it on B-Scans containing multiple underground
objects. These B-Scans were designed to have up to two objects with different diameters, depths,
and pipe types. By evaluating the network’s predictions on these complex scenarios, we gained in-
sights into its ability to accurately identify and classify multiple objects simultaneously. The results
showed a high accuracy of the model in successfully recognizing and distinguishing between the
various underground objects, which demonstrates its effectiveness in handling real-world scenarios
with multiple objects of diverse characteristics.

5 Discussion and conclusions

In this study, the focal point was on developing a multi-label classification (MLC) model using
transfer learning and data augmentation techniques. Three deep learning models, namely VGG-16,
ResNet-50, and an adapted CNN, were utilized as pre-trained models for transfer learning. These
models were trained on a synthetic dataset created using the TEMSI-FD software, which simulates
the propagation of electromagnetic waves in complex media. To enhance the model’s performance,
various techniques were employed, including advanced algorithms, data preprocessing, feature se-
lection, and hyperparameter tuning. Data augmentation techniques, such as Horizontal and Vertical
shift, as well as Resizing, were used to improve data diversity and the model’s interpretation of in-
formation.The regularization technique of early stopping was applied to the training process. This
technique involves monitoring the model’s performance on a validation dataset and stopping the
training after a certain number of epochs if no improvement is observed. The weights of the model
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are saved and updated throughout training, and the most recent optimal parameters are used when
further updates no longer improve performance. Based on the results presented the VGG16 model
achieved a better accuracy of 96% in diameter identification, while the Resnet-50 model achieved
an efficiency of 98% in pipe type identification. Both the VGG16 model and the customized CNN
model achieved a higher level of sensitivity (98%) in the identification of the propagation medium.
To evaluate the performance of the network in the presence of various underground objects, B-Scan
images were created with up to 2 objects of different diameters, depths, and pipe types. In con-
clusion, this study successfully developed a multi-label classification model using deep learning
techniques, transfer learning, and data augmentation. The models demonstrated high accuracy and
sensitivity in identifying diameters, pipe types, and propagation mediums. The use of synthetic
datasets, advanced algorithms, and regularization techniques contributed to the model’s improved
performance and reliability. Future work will focus on generating noisy data to assess the robust-
ness of our models. As well as the development of a new algorithm based on transformers for
extracting characteristics from Radar signals while combining A-Scan and B-Scan.
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