Effective descent for differential operators - Université de Limoges Accéder directement au contenu
Article Dans Une Revue Journal of Algebra Année : 2010

Effective descent for differential operators

Elie Compoint
  • Fonction : Auteur
Marius van Der Put
  • Fonction : Auteur
  • PersonId : 830218
Jacques-Arthur Weil
  • Fonction : Auteur
  • PersonId : 918084


A theorem of N. Katz (1990) [Ka], p. 45, states that an irreducible differential operator L over a suitable differential field k, which has an isotypical decomposition over the algebraic closure of k, is a tensor product L = M ⊗k N of an absolutely irreducible operator M over k and an irreducible operator N over k having a finite differential Galois group. Using the existence of the tensor decomposition L = M⊗N, an algorithm is given in É. Compoint and J.-A. Weil (2004) [C-W], which computes an absolutely irreducible factor F of L over a finite extension of k. Here, an algorithmic approach to finding M and N is given, based on the knowledge of F . This involves a subtle descent problem for differential operators which can be solved for explicit differential fields k which are C1-fields.
Fichier non déposé

Dates et versions

hal-00637676 , version 1 (02-11-2011)



Elie Compoint, Marius van Der Put, Jacques-Arthur Weil. Effective descent for differential operators. Journal of Algebra, 2010, 324 (1), pp.146-158. ⟨10.1016/j.algebra.2010.02.040⟩. ⟨hal-00637676⟩


43 Consultations
0 Téléchargements



Gmail Facebook X LinkedIn More