Verification Protocols with Sub-Linear Communication for Polynomial Matrix Operations - Université de Limoges
Article Dans Une Revue Journal of Symbolic Computation Année : 2021

Verification Protocols with Sub-Linear Communication for Polynomial Matrix Operations

Résumé

We design and analyze new protocols to verify the correctness of various computations on matrices over the ring F[x] of univariate polynomials over a field F. For the sake of efficiency, and because many of the properties we verify are specific to matrices over a principal ideal domain, we cannot simply rely on previously-developed linear algebra protocols for matrices over a field. Our protocols are interactive, often randomized, and feature a constant number of rounds of communication between the Prover and Verifier. We seek to minimize the communication cost so that the amount of data sent during the protocol is significantly smaller than the size of the result being verified, which can be useful when combining protocols or in some multi-party settings. The main tools we use are reductions to existing linear algebra verification protocols and a new protocol to verify that a given vector is in the F[x]-row space of a given matrix.
Fichier principal
Vignette du fichier
polynomial_matrix_certificates.pdf (287.12 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01829139 , version 1 (03-07-2018)
hal-01829139 , version 2 (11-12-2019)

Identifiants

Citer

David Lucas, Vincent Neiger, Clément Pernet, Daniel S. Roche, Johan Rosenkilde. Verification Protocols with Sub-Linear Communication for Polynomial Matrix Operations. Journal of Symbolic Computation, 2021, 105, pp.165--198. ⟨10.1016/j.jsc.2020.06.006⟩. ⟨hal-01829139v2⟩
441 Consultations
381 Téléchargements

Altmetric

Partager

More