Weak and strong minima : from calculus of variation toward PDE optimization - Université de Limoges Accéder directement au contenu
Pré-Publication, Document De Travail Année : 2013

Weak and strong minima : from calculus of variation toward PDE optimization

Francisco José Silva
  • Fonction : Auteur
  • PersonId : 951536
DMI

Résumé

This note summarizes some recent advances on the theory of optimality conditions for PDE optimization. We focus our attention on the concept of strong minima for optimal control problems governed by semi-linear elliptic and parabolic equations. Whereas in the field of calculus of variations this notion has been deeply investigated, the study of strong solutions for optimal control problems of partial differential equations (PDEs) has been addressed recently. We first revisit some well-known results coming from the calculus of variations that will highlight the subsequent results. We then present a characterization of strong minima satisfying quadratic growth for optimal control problems of semi-linear elliptic and parabolic equations and we end by describing some current investigations.
Fichier principal
Vignette du fichier
ifacconf14bayensilva.pdf (90.12 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00913735 , version 1 (22-01-2014)

Identifiants

  • HAL Id : hal-00913735 , version 1

Citer

Térence Bayen, Francisco José Silva. Weak and strong minima : from calculus of variation toward PDE optimization. 2013. ⟨hal-00913735⟩
255 Consultations
2808 Téléchargements

Partager

Gmail Facebook X LinkedIn More