A divide-and-conquer algorithm for computing Gröbner bases of syzygies in finite dimension - Université de Limoges
Pré-Publication, Document De Travail Année : 2020

A divide-and-conquer algorithm for computing Gröbner bases of syzygies in finite dimension

Résumé

Let $f_1,\ldots,f_m$ be elements in a quotient $R^n / N$ which has finite dimension as a $K$-vector space, where $R = K[X_1,\ldots,X_r]$ and $N$ is an $R$-submodule of $R^n$. We address the problem of computing a Gr\"obner basis of the module of syzygies of $(f_1,\ldots,f_m)$, that is, of vectors $(p_1,\ldots,p_m) \in R^m$ such that $p_1 f_1 + \cdots + p_m f_m = 0$. An iterative algorithm for this problem was given by Marinari, M\"oller, and Mora (1993) using a dual representation of $R^n / N$ as the kernel of a collection of linear functionals. Following this viewpoint, we design a divide-and-conquer algorithm, which can be interpreted as a generalization to several variables of Beckermann and Labahn's recursive approach for matrix Pad\'e and rational interpolation problems. To highlight the interest of this method, we focus on the specific case of bivariate Pad\'e approximation and show that it improves upon the best known complexity bounds.
Fichier principal
Vignette du fichier
syzygies_final.pdf (788.85 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02480240 , version 1 (15-02-2020)
hal-02480240 , version 2 (04-06-2020)

Identifiants

Citer

Simone Naldi, Vincent Neiger. A divide-and-conquer algorithm for computing Gröbner bases of syzygies in finite dimension. 2020. ⟨hal-02480240v2⟩
162 Consultations
241 Téléchargements

Altmetric

Partager

More